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1 Université Paris Est, CERMICS, Project-team MICMAC, INRIA-Ecole des Ponts,
6 & 8 Avenue Pascal, F-77455 Marne-la-Vallée Cedex 2, France
2 IMPMC, Universités Paris 6 et 7, CNRS, IGPG, 140 rue de Lourmel, F-75015 Paris, France

E-mail: stoltz@cermics.enpc.fr

Received 14 January 2009, in final form 24 March 2009
Published 21 May 2009
Online at stacks.iop.org/JPhysCM/21/245302

Abstract
We present a study of the phononic thermal conductivity of isotopically disordered carbon
nanotubes. In particular, the behaviour of the thermal conductivity as a function of the system
length is investigated, using Green’s function techniques to compute the transmission across the
system. The method is implemented using linear scaling algorithms, which allow us to reach
systems of lengths up to L = 2.5 μm (with up to 200 000 atoms). As for 1D systems, it is
observed that the conductivity diverges with the system size L. We also observe a dramatic
decrease of the thermal conductance for systems of experimental sizes (roughly 80% at room
temperature for L = 2.5 μm), when a large fraction of isotopic disorder is introduced. The
results obtained with Green’s function techniques are compared to results obtained with a
Boltzmann description of thermal transport. There is a good agreement between both
approaches for systems of experimental sizes, even in the presence of Anderson localization.
This is particularly interesting since the computation of the transmission using Boltzmann’s
equation is much less computationally expensive, so that larger systems may be studied with
this method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon nanotubes (CNTs) are very interesting materials
for nanoscale electronic devices due to their outstanding
mechanical and electrical (depending on their chirality, CNTs
can be semiconducting or metallic) properties. Recently,
it was also discovered that CNTs have very good thermal
properties, as measured experimentally for individual single-
walled carbon nanotubes (Yu et al 2005) or as estimated
by computer simulations. At room temperature, the thermal
conductance of carbon nanotubes seems to be dominated by
the phononic contribution, even for metallic carbon nanotubes
(Hone et al 1999, Yamamoto et al 2007).

Thermal properties are usually investigated using Fourier’s
law. For nonequilibrium steady states where the system is put

in contact with two reservoirs at different temperatures, there
is a net energy flow from the hotter to the colder reservoir. The
heat current density J is proportional to the temperature gradi-
ent

J = κ∇T, (1)

κ being the thermal conductivity (a tensor, in general).
Denoting by �T the temperature difference between the
reservoirs, and by L the system size in the direction of the
temperature gradient

κ = |J|L
�T

,

provided the temperature profile is linear. For usual three-
dimensional materials, the thermal conductivity does not
depend on the system size, and so it is a well-defined
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thermodynamical quantity. The situation is different for one-
dimensional (1D) systems, for which the thermal flux is related
to the transmission function of phonons from one reservoir to
the other. For defect-free periodic one-dimensional harmonic
systems, there is no phonon scattering mechanism. Those
systems can sustain a current which does not depend on the
system’s length (Rieder et al 1967), so that |J|/�T is constant.
The thermal conductivity therefore diverges as L, and is not
well defined. In general, one-dimensional (1D) systems in
which scattering processes can take place should exhibit an
intermediate scaling |J|/|�T | ∼ L−α with 0 < α < 1, in
which case the thermal conductivity is again not well defined.
For the thermal conductivity to be well defined and Fourier’s
law to hold, the current should decrease as |J|/|�T | ∼ L−1.

The theoretical and numerical results of heat transport
in 1D chains are not always acknowledged in computational
studies of thermal conductivities of CNTs. There have been
many studies on the (non-) validity of Fourier’s law in one-
dimensional chains. There are two important review papers on
this topic, written either from a mathematical (Bonetto et al
2000) or a physical (Lepri et al 2003) viewpoint.

It is believed that CNTs should have a behaviour
reminiscent of 1D systems, although such claims should be
backed up by more systematic studies. The dependence of
the CNT conductivities on the system length should therefore
be a major and primary concern in any study of the thermal
conductance. Only very few experimental studies on the length
dependence of the thermal conductance of carbon nanotubes
are available to our knowledge (see, for instance, (Wang et al
2007) and (Chang et al 2008)), and numerical results are still
rare. More importantly, Fourier’s law, which is not valid
in general for 1D systems, is sometimes assumed to hold
to interpret experimental measurements in order to extract
conductivities (Pop et al 2006).

In order to have a well-defined conductivity, a necessary
condition (which may not be sufficient) is that some scattering
mechanisms can take place, so that the thermal flux is reduced.
Several scattering mechanisms exist in actual materials, which
may be intrinsic, as for inelastic anharmonic phonon–phonon
scattering, or extrinsic, as for elastic phonon scattering with
defects. Experimental results showed that CNTs of lengths
2.76 μm may exhibit nearly ballistic transport (Yu et al 2005).
This justifies that anharmonic scattering may be neglected if
the elastic scattering processes with defects are important. The
most simple defect that can be experimentally controlled is
isotope disorder, which amounts here to replacing the usual
12C atom by one of its 13C isotope. CNTs with isotope
disorder have already been synthesized (Simon et al 2005)
and experimental results on boron nitride tubes (Chang et al
2006) showed that isotope disorder could lead to dramatic
changes in the thermal conductivity. Moreover, isotopically
disordered harmonic systems are also the simplest systems
that can be treated exactly with quantum statistics. However,
it may already be expected that isotope defects will not be
able to remove the divergent thermal conductivity, as already
mentioned in Mingo and Broido (2005b).

There are several methods to compute the thermal
conductance of isotopically disordered harmonic systems using

quantum statistics (we therefore disregard molecular dynamics
techniques which give only results within the classical
framework). These systems exhibit Anderson localization
(Matsuda and Ishii 1970), which arises from an interference
effect of different scattering paths, and is thus a manifestation
of the undulatory nature of the phonon vibrations. The Green’s
function technique is then a very appealing method to compute
the thermal conductance in those systems, since it gives the
exact transmission, has a computational cost scaling linearly
with the system length and is straightforward to parallelize
since transport is coherent. This allows us to reach systems
of lengths up to L = 2.5 μm (with up to 200 000 atoms).
A Boltzmann approach, which describes the evolution of the
phonon distribution and therefore treats phonons as particles
and not as waves, gives only an average description of the
phonon flows in the system. It cannot account for the Anderson
localization of states, and it is therefore unclear whether it
can provide a good approximation to the exact transmission.
A Boltzmann treatment of the transmission is, however, very
interesting since the method is computationally less expensive
(no averages over the disorder realizations have to be taken,
the computational scaling with respect to the CNT index is
more favourable and the inclusion of anharmonic scattering
processes is easier than for Green’s functions).

In this paper, we will address three problems, systemati-
cally studying the length dependence of the thermal conductiv-
ity with Green’s function techniques:

(i) does a well-defined conductivity (independent of the
length) exist for harmonic disordered CNTs, or is the
thermal transport anomalous? The theoretical results on
heat transport in 1D chains suggest that the transport is
anomalous, but can the asymptotic divergence κ(L) ∼
Lβ be estimated, or should incredibly long tubes be
considered before such a regime is found?

(ii) how much is the thermal conductance reduced by isotopic
disorder? How does this decrease depend on the
temperature?

(iii) in order to reach even larger systems (larger diameters
and/or lengths), a third question is whether the Boltzmann
approach to thermal transport is a good approximation for
CNTs of experimental lengths?

This paper is organized as follows. We present briefly
the notation and the numerical method in section 2. We
then turn to isotopically disordered one-dimensional chains
in section 3, in order to test the validity of the Boltzmann
approach in this simple case. Section 4 presents our new results
on the systematic study of the length dependence of the thermal
conductivity for CNTs. A conclusion is presented in section 5.

2. Models for thermal transport

We recall in this section two important models of transport: (i)
the Green’s function approach, which solves the model in its
full atomistic details, and is exact for harmonic systems and
(ii) the computationally less expensive but more approximate
Boltzmann treatment. Both approaches will be used here
to compute the decrease of the thermal conductance arising
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from a disordered region embedded in an otherwise perfect
medium. We remark that the Green’s function treatment gives
the exact transmission for a given realization of the mass
disorder. Therefore, averages over the disorder realizations
have to be performed, unless the transmission function does
not vary much from one disorder realization to another. In
contrast, the Boltzmann approach already gives some average
transmission.

2.1. The Green’s function treatment of thermal transport

2.1.1. Description of layered one-dimensional systems.
Coherent thermal transport, presented in a pedagogical fashion
in Zhang et al (2007), involves expressions very similar to the
usual expressions for electronic transport (Datta 2005, 2000).
The lattice thermal conductance arises from phonons (Ashcroft
and Mermin 1976, Baroni et al 2001), which are quantized
displacements of harmonic lattices. We consider an infinitely
extended system as depicted in figure 1. The Hamiltonian is

H (q, p) = 1
2 qt K q + 1

2 pt M−1p,

where the infinite-dimensional vectors q = (. . . , qi,1, . . . , qi,N ,

qi+1,1, . . .)
t, p = (. . . , pi,1, . . . , pi,N , pi+1,1, . . .)

t stand, re-
spectively, for displacements and momenta. The first index
refers to the cell to which the atom belongs and the second
indexes the atom within a cell. The cell in question can be
the periodic unit cell used to generate the system, but it may
also be some convenient supercell (see below). The infinite-
dimensional matrix M is the (diagonal) mass matrix of the sys-
tem. The matrix K is the interatomic force constant matrix. It
is assumed to be short ranged in the following, so that an atom
interacts only with atoms located in a few neighbouring unit
cells. Changing coordinates to mass weighted coordinates, the
transport properties of the system can in fact be completely
characterized by the harmonic matrix

A = M−1/2 K M−1/2. (2)

We restrict ourselves in this study to a disordered region
embedded in a perfect medium (see figure 1). The case of
mass disorder is then dealt with by considering the mass of the
particles to be randomly distributed. In the most physical case,
namely isotopic disorder, the probability to have the mass m at
a given site is 1−c and the probability to have a mass m +�m
is c, where 0 � c � 1 denotes the disorder concentration. The
assumptions on the system imply that the mass matrix is of the
general form

M =
( ML 0 0

0 Msys 0
0 0 MR

)
, (3)

where in ML and MR all the masses are equal to m, while in
Msys they are randomly distributed.

Carbon nanotubes are quasi-one-dimensional systems,
that is, systems of finite size in the transverse directions and
(infinitely) extended in the remaining direction. We consider a
fundamental supercell (a layer) composed of possibly several
unit cells. The number of cells in this fundamental structure is

Left 
lead 

Right 
lead 

Periodic 
unit cell Layer 

Disordered region (system)

Figure 1. View of a layered 1D system. The infinite system is
decomposed into three regions: a semi-infinite left lead, a
semi-infinite right lead (which are both assumed to be perfect) and a
finite central disordered region. Assuming here that the atoms in the
periodic unit cell interact with atoms located in the three
neighbouring cells on each side, a fundamental ‘supercell’, called a
layer, can be considered. Atoms in such a layer interact only with
atoms in the two adjacent layers.

determined by the condition that an atom in a layer interacts
only with atoms in the two adjacent layers. The harmonic
matrix therefore has the generic block tridiagonal shape

A =
( AL TL 0

Tt
L Asys TR

0 Tt
R AR

)
. (4)

The (infinite) subsystems associated with the semi-infinite
matrices AL and AR represent some reservoirs to which the
(finite) system Asys is coupled through the interaction terms
TL,TR (for a matrix M, Mt denotes the transpose matrix,
while M† denotes the Hermitian conjugate of M in the
following). If Nlayers is the number of layers composing the
disordered region, there are Nat Nlayers atoms in the central part,
and the matrix Asys is of size 3Nat Nlayers × 3Nat Nlayers.

2.1.2. Heat current in terms of Green’s functions. The
Green’s function of the whole system is defined as

G+(ω) = lim
η→0

(ω2 + iη − A)−1

when this limit exists (Jaksic 2006). In numerical
computations, the parameter η is a small positive number. The
effective Green’s function for the central region is

G+
sys(ω) = lim

η→0

(
ω2 + iη − Asys − �+

L (ω) − �+
R (ω)

)−1
,

(5)
where the self-energies

�+
α (ω) = lim

η→0
Tt

α(ω
2 + iη − Aα)

−1Tα (α = L, R)

model the coupling of the system with the contacts. In
particular, the imaginary part of the self-energy is usually
associated with some lifetime (due to phonons flowing out of
the central region). This is maybe more easily understood in
the quantum Langevin framework, where the self-energy is the
Fourier transform of the friction kernel (Dhar and Roy 2006).
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When there are no incoherent scattering processes, the
current is given as the superposition of phonons going from the
left reservoir to the right one, minus the flow of phonons going
from the right reservoir to the left one. When the reservoirs
are at different temperatures (respectively, TL and TR), the heat
current flowing through the system is (Datta 2005, Zhang et al
2007, Dhar and Roy 2006)

J (TL, TR) =
∫ +∞

0

h̄ω

2π
T (ω)( fTL(ω) − fTR(ω)) dω, (6)

where the transmission factor T (ω) is

T (ω) = Tr[
+
L (ω)G+

sys(ω)
+
R (ω)(G+

sys(ω))†]. (7)

In the above expressions, 
+
α (ω) = −2Im(�+

α (ω))(α = L, R)

is related to the imaginary part of the self-energies and the
functions fT are the Bose–Einstein distributions

fT(ω) =
(

exp

(
h̄ω

kBT

)
− 1

)−1

.

The expression of the thermal conductance is exact since
the system is harmonic. The practical computation of the
transmission is presented, for instance, in appendix A of Stoltz
et al (2008).

Introducing t (ω) = 
L(ω)1/2G+
sys(ω)
R(ω)1/2, the

transmission can be rewritten as T (ω) = Tr(t (ω)t (ω)†). It
is therefore nonnegative. In fact, when there is no disorder, the
transmission is ballistic and equal to the number of conducting
channels at this pulsation. In the presence of mass disorder, the
transmission is lower than the ballistic transmission.

2.1.3. Thermal conductance and thermal conductivity. The
thermal conductance associated with the heat current (6) is
obtained in the limit �T = TR − TL → 0 as

g(T ) = lim
�T →0

J
(
T + �T

2 , T − �T
2

)
�T

=
∫ +∞

0

h̄ω

2π
T (ω)

∂ fT (ω)

∂T
dω. (8)

A remarkable fact about the heat current is that the associated
thermal conductance is quantized (Rego and Kirczenow 1998),
the quanta of thermal conductance being

g0(T ) = π2k2
BT

3h
. (9)

This expression is obtained in the limit T → 0 for a
single acoustic branch in the ballistic regime. The quantum
of thermal conductance has been experimentally measured
(Schwab et al 2000). In the following, conductances will most
often be normalized with respect to the quantum of thermal
conductance:

ḡ(T ) = g(T )

g0(T )
. (10)

The dimensionless quantity ḡ(T ) is called ‘normalized
conductance’ in the results presented below.

For 1D systems, the thermal conductivity κ is the thermal
conductance divided by the system cross section A and
multiplied by the system length L:

κ = gL

A
. (11)

The notion of cross section depends on the system considered
and on the conventions used (see section 4.1 for our
conventions in the case of CNTs). From this definition, it is,
however, clear that the existence of a well-defined (length-
independent) non-vanishing thermal conductivity requires a
decrease of the thermal current (or thermal conductance) as
1/L. Since the thermal conductivity is not well defined a
priori, the thermal conductance is a much better notion to
handle.

The practical computation of the thermal conductance
using (8) therefore boils down to computing the transmission
factor T (ω) given by (7) for the whole phonon spectrum (see
appendix A of Stoltz et al (2008)).

2.2. The Boltzmann approximation of coherent transport

The Boltzmann method is a less expensive but more
approximate method than the Green’s function treatment for
the computation of the thermal conductance. It allows us to
compute conductivities for very long systems, and therefore
to study the length dependence of the conductivity. Recent
derivations of the Boltzmann equation from microscopic
dynamics have been presented in Spohn (2006), Lukkarinen
and Spohn (2007) in the so-called kinetic limit (vanishingly
small mass disorder or anharmonicities, long time limit,
interatomic spacing going to zero). The Boltzmann equation
therefore describes some average behaviour of the phonons.

The central object describing this average behaviour is the
phonon distribution n j (ω, x, t). The index j labels the phonon
branch, ω is the phonon pulsation, while x is the position
along the system. The quantity n j (ω, x, t) therefore counts
the number of phonons of pulsation ω in the j th branch at a
point x at time t . The evolution of the phonon distribution
is governed by the Boltzmann equation, which consists of
two terms: (i) a transport term, which models the free flow
of phonons through the harmonic system of reference, and
(ii) a collision term, which models the rate at which phonons
from one branch are scattered into another branch due to the
defects and/or impurities in the actual system. Since we do
not consider anharmonic effects in this study but only mass
defects, the energy is conserved in the collision processes and
the only scattering mechanism is the scattering from a phonon
in a given branch to a phonon in another branch at the same
energy.

2.2.1. The Boltzmann equation. For the system introduced
in section 2.1.1, a phonon at a wavevector k is an eigenvector
of the dynamical matrix of the perfect system. For a given
pulsation ω̄ � 0, the associated phononic branches j at this
pulsation are all solutions of the equation

ω2
j (k) = ω2

j (−k) = ω̄2, 0 � j � 3Nat, (12)

4
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for some k in the Brillouin zone. We denote by N ≡ N(ω̄)

the number of branches at this pulsation and by n j,σ (ω, x, t)
the density of phonons of the j th branch ( j = 1, . . . , N(ω̄)

upon reordering). The index σ = ±1 labels the solutions
ω2

j (k) = ω̄2 depending on the sign of the phononic velocity:
σ = +1 corresponds to k points such that

ω j (k j,+1) = ω̄, v j = ∂ω j

∂k
(k j,+1) > 0,

whereas the velocity is negative at points k j,−1 = −k j,+1, and
is actually equal to −v j .

The Boltzmann equation is(
∂t + σ v j∂x

)
n j,σ (ω, x, t)

=
∑

( j ′,σ ′) �=( j,σ )

W( j,σ ),( j ′,σ ′)

v j
n j ′,σ ′(ω, x, t)

− W( j ′,σ ′),( j,σ )

v j ′
n j,σ (ω, x, t). (13)

The left-hand side of the above equation is the transport
part of the Boltzmann equation. Notice also that ω does
not enter explicitly in the above equation. It can therefore
be considered as a continuous parameter indexing a set of
independent equations.

The matrix W = [W( j,σ ),( j ′,σ ′)]1� j, j ′�N,σ,σ ′=±1 describes
the interactions between the branches, i.e. the collision term. It
is such that for all ( j, σ ) �= ( j ′, σ ′):

W( j,σ ),( j ′,σ ′) � 0, W( j,σ ),( j ′,σ ′) = W( j ′,σ ′),( j,σ ),

W( j,−σ ),( j ′,−σ ′) = W( j ′,σ ′),( j,σ ).

The above conditions have physical interpretations: (i) the first
condition (non-negativity of the matrix elements) means that
the scattering term models the decay of phonons of one branch
into phonons of another branch; (ii) the second condition
ensures the conservation of the total phonon number and (iii)
the last condition is some symmetry condition with respect
to the propagation direction of phonons. The precise form
of the scattering matrix depends on the problem at hand; see
below the expression (14) in the case of isotopically disordered
lattices.

2.2.2. The collision term. The expression of the scattering
matrix are derived from a perturbative approach based on
the Fermi golden rule (Tamura 1983, Widulle et al 2002,
Vandecasteele et al 2009):

W( j,σ ),( j ′,σ ′) = l0
Var(m)

〈m〉2
ω̄2

Nat∑
l=1

|u
j,σ (l) · u j ′,σ ′(l)|2, (14)

where 〈m〉 and Var(m) = 〈m2〉 − 〈m〉2 are the average mass
and the variance of the mass disorder, respectively, and l0 is the
length of the unit cell. The three-dimensional vector u j,σ (l) is
the part of u j corresponding to the three degrees of freedom
of the lth atom in the unit cell for phonon displacements u j

computed for a perfect lattice.
The scattering term (14) agrees with the mathematical

results obtained by the kinetic limit of the microscopic

dynamics in the case of a simple one-dimensional chain
(Lukkarinen and Spohn 2007). From a numerical viewpoint,
the expression (14) is very interesting since it allows an
analytic computation of the scattering rates once the phonon
spectrum has been computed. Appendix B of Stoltz et al
(2008) presents the details of the numerical solution of (13)
using the scattering term (14).

2.2.3. Transmission properties using the Boltzmann equation.
Thermal properties are computed for nonequilibrium steady
states where a heat current flows through the system. This is
done by setting appropriate boundary conditions and waiting
for the system to equilibrate. The boundary conditions for (13)
suited to the transmission of a single phonon from the left (hot)
reservoir to the right (cold) one, are:

n j,+(ω, 0, t) = 1, n j,−(ω, L, t) = 0.

The numbers n j,+(ω, L, t) and n j,−(ω, 0, t) are, respectively,
the proportion of transmitted and reflected phonons. These
proportions are computed using the Boltzmann equation and
this defines the transmission factor.

When a stationary regime is reached (∂t n j,σ = 0 for all
j, σ ), the phonon distributions do not depend on time anymore
and we drop the variable t in our notations. It is easily seen
that the transmission coefficient is independent of the position
x , so that

T (ω, x) = N(ω)

∑N(ω)

j=1 n j,+(ω, L) v j (ω)∑N(ω)
j=1 v j (ω)

.

This coefficient is the Boltzmann equivalent of the transmis-
sion function T (ω) computed using Green’s function tech-
niques.

3. Results for one-dimensional chains

Perfect one-dimensional harmonic lattices with nearest-
neighbour interactions are described by the Hamiltonian

H =
∑

j

p2
j

2m
+ 1

2
k(q j+1 − q j)

2.

This model fits in the general framework presented in section 2
when taking Nat = 1 atoms per unit cell and layers of Nlayers =
1 unit cell. In this section, we will work in reduced units of
mass and length, and consider a one-dimensional chain with
unit lattice spacing and particles of mass 1. The ballistic
transmission of this model is

T (ω) =
{

1 if 0 � ω � ωmax,

0 otherwise.

Isotopic disorder is modelled by replacing with probability
0 < c < 1 the mass of a particle by m(1+δ) with δ = �m/m.

3.1. Heat transport in isotopically disordered harmonic
lattices

Heat transport in isotopically disordered harmonic lattices
has been thoroughly studied (Matsuda and Ishii 1970, Rubin

5
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and Greer 1971, Casher and Lebowitz 1971, Ishii 1973,
O’Connor and Lebowitz 1974). In particular, the case of a
finite disordered chain connected to two semi-infinite perfect
chains has been considered (Rubin and Greer 1971) and
the corresponding theoretical results were rederived from a
different perspective and extended in O’Connor and Lebowitz
(1974), Dhar (2001). It is suggested in Rubin and Greer (1971)
that the thermal conductivity diverges as

√
L (L being the

chain length). This has been shown rigorously (Keller et al
1978) for an analogous continuum wave model (open boundary
conditions and disorder).

Heuristic arguments can be employed to back up the√
L divergence of the thermal conductivity by studying the

properties of the transmission function. Denoting explicitly the
length dependence of the transmission function by TL(ω), the
exact transmission decreases exponentially as

TL(ω) � exp(−L/ lloc(ω)). (15)

The length lloc is the localization length. This result was
proved in Matsuda and Ishii (1970) (but earlier obtained in
the limit of low concentration of defects (Rubin 1968)). The
proof is based on a theorem by Furstenberg on the product
of random matrices (Furstenberg 1963). The behaviour of lloc

around ω2 = 0 can also be precised (Matsuda and Ishii 1970,
O’Connor and Lebowitz 1974). For isotopic disorder, it can be
shown that

lim
ω2→0

1

ω2 lloc(ω)
= Var(m)

〈m〉2
= c(1 − c)

4

δ2

(1 + cδ/2)2
. (16)

This shows that a high frequency implies a shorter localization
length and therefore the associated eigenmodes are strongly
localized, so that only the low frequency modes contribute to
transport; in fact, only a fraction O(L−1/2) of them since

TL(ω) � exp

(
−Var(m)

〈m〉2
Lω2

)

when ω → 0. This explains therefore the L−1/2 decay of the
thermal conductance, in view of (8).

3.2. Comparison of the Green’s function and Boltzmann
treatments

The transmission is computed using the Green’s function
approach at Nω = 5000 points uniformly spaced in the range
[0, ωmax], with η/ω2

max = 10−12 (the self-energies having an
analytical expression, see, for instance, (Economou 2006)).
The averages are taken over Ndisorder = 100 realizations of
the isotopic disorder for chains of length L = 106, while
Ndisorder = 1000 for L = 105 and Ndisorder = 104 for L = 102–
104. The average transmission functions computed from (7)
are presented in figure 2 in the case δ = 1/12 and c = 0.5.
The mass variation δ is the mass variation corresponding to
substituting 12C with 13C.

The transmission predicted by the Boltzmann approach
can be computed analytically in this simple case since there
is only a single branch and there are therefore only two
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0.2

0.4

0.6
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Figure 2. Averaged transmission function TL(ω) as a function of ω
for different system sizes. From top to down: increasing system sizes
from L = 100 to 106. The (thick) black curves are the transmissions
computed with a Green’s function approach and the (thin) red curves
are obtained from the Boltzmann formula (17).

conducting states for a given pulsation (due to the symmetry
ω(k) = ω(−k)). The transmission is of diffusive type, with

TL(ω) =
(

1 + L

lBoltz(ω)

)−1

, (17)

with
1

ω2 lBoltz(ω)
= Var(m)

〈m〉2

(
1 − ω2

4

)−1

.

Notice that this expression of the transmission agrees at second
order in ω with (15) in the limit ω → 0.

The comparison between the transmissions computed with
the Green’s function and the Boltzmann approaches shows that
the Boltzmann treatment is a reasonable approximation for
low frequency modes, but predicts a transmission which is too
large for higher frequencies. The critical frequency at which
the Boltzmann transmission starts to depart significantly from
the Green’s function transmission decreases with the system
size. Therefore, we expect the conductances to agree in the
low temperature regime for all system lengths and the relative
error to increase with the system length at larger temperatures
where the higher frequency part of the transmission is taken
into account.

This is indeed confirmed by the scalings of the normalized
thermal conductance (computed using (10)) in figure 3 for
different values of x = h̄ω/kBT . As expected, the asymptotic
scaling L−1/2 for the thermal conductance is reached for
systems long enough when the transmission is computed using
the Green’s function approach. This could be anticipated since
the Green’s function results are exact for harmonic systems.
Besides, it is observed that the asymptotic regime where the
conductance scales as ḡ ∼ L−1/2 is attained for shorter tubes
when the temperature is increased. Some of our simulations
(not presented here) also showed that longer tube lengths
are required for this regime to be attained when the disorder
concentration is lower.

On the other hand, the conductances predicted by the
Boltzmann approach for systems long enough, are larger than

6
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Figure 3. Conductances computed using the Green’s function
approach and a Boltzmann treatment for two values of x = h̄ω/kBT .
The asymptotic regime where ḡ ∼ L−α (dashed lines) is attained
only for x = 1, with α � 0.48 for the Green’s function approach and
α � 0.44 in the Boltzmann case.

the conductances obtained with the Green’s function approach.
The Boltzmann treatment does not predict the right asymptotic
scaling either, though the discrepancy is not too large. This is
due to the fact that the Boltzmann transmission does not decay
fast enough with the system size for larger values of ω.

4. Numerical results for carbon nanotubes

4.1. Description of the model

In the model we use, the tube is simulated using the
interatomic force constants (IFCs) computed from density
functional theory calculations (Baroni et al 2001), using the
PWCSF package of the QUANTUM-ESPRESSO distribution
(Baroni 000) on a (5, 5) CNT3. We restrict ourselves to
armchair nanotubes for simplicity. Armchair nanotubes are
very important for applications since they are metallic (here we
compute only the phononic thermal conductance). We expect
the results presented below to be robust with respect to the
system chirality, because the ballistic conductance does not
change much with the chirality (Mingo and Broido 2005a).

In order to have a block tridiagonal form for the interaction
matrix within the ab initio model, only interactions within a
cutoff radius Rcut = 15 Bohr are taken into account. The
projection procedure of (Mounet 2005) was used to ensure that
acoustic sum rules are satisfied for the truncated IFC matrix.
The resulting phonon spectrum is presented in figure 4. As
expected, there are four acoustic modes since the flexural mode
(starting with a k2 dispersion law) is doubly degenerate.

We first compare the computed thermal conductance of
perfect CNTs and experimental measurements. Actually, a
more intrinsic property to compare is the ballistic thermal

3 The computations were performed using the local density approximation
(Ceperley and Alder 1980), norm-conserving pseudo-potentials (Troullier and
Martins 1991, Fuchs and Scheffler 1999) and a plane-wave expansion up to
55 Ryd cutoff. Brillouin-zone sampling was performed on a 1 × 1 × 32
Monkhorst–Pack mesh, with a Fermi–Dirac smearing of 0.02 Ryd. The
dynamical matrices are calculated on a 1 × 1 × 12 grid of q-points and Fourier
interpolation is used to get the dynamical matrices on a finer mesh of q-points.
The theoretical radius of the (5, 5) CNT is 6.412 Bohr.
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Figure 4. Phonon spectrum of a (5, 5) CNT with ab initio computed
interatomic forces.

Figure 5. Ballistic conductivity per unit length (expressed in Å),
with the cross-sectional area (18). Experimental points taken from
Yu et al (2005) are also reported.

conductance divided by the cross-sectional surface of the
material g/A (this is the so-called ballistic conductivity per
unit length, compare with (11)). The cross-sectional area A is
obtained from a ‘fattened’ carbon ring:

A = 2π Rd = 3nd, (18)

where n is the index of the nanotube, R is the radius of the
carbon ring and d = 3.35 Å (the graphite interlayer separation)
is some characteristic length defining the width of the annular
domain enclosing the carbon ring. Figure 5 presents a plot of
g/A as a function of the temperature for two CNTs of different
indices, as well as a reference curve computed from ab initio
results and experimental results (Yu et al 2005).

The agreement with the experimental results from Yu
et al (2005) for temperatures around room temperature and
below suggests that the present models contain the essential
ingredients for describing thermal transport. In particular,
other effects (at present not taken into account) such as
anharmonic interactions may be neglected in this temperature
regime (and for lower temperatures). The measurements from
Yu et al (2005) have been transformed into conductivities per

7
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Figure 6. Transmissions obtained with the Green’s function
formalism (black curves) and the Boltzmann approach (red curves).
The line corresponding to the largest transmission is the reference
ballistic transmission. The other lines correspond to tubes of
different lengths, namely L = 25 nm, 249 nm and 2.49 μm, the
highest transmissions corresponding to the shortest tubes.

unit length by assuming that the CNTs used for the experiments
have a diameter of 1 nm. The authors of Yu et al (2005) indeed
find that the CNTs used have a diameter in the range 1–2 nm,
occasionally 2–3 nm. If the diameter is indeed 1 nm, then
the experimental results are close to the ballistic conductance
curve, which means that the thermal transport is nearly ballistic
(Yu et al 2005). If the diameters are larger, there is a reduction
of about 50% of the conductance for the CNTs of experimental
lengths (about L = 2.76 μm) with respect to the ballistic
conductance. This reduction may be attributed to anharmonic
effects. We remark that, even in this case, the effect of isotopic
disorder should still be noticeable since the results on the
conductivities in section 4.4 show that isotope disorder can
lead to a reduction of about 80% of the conductance at room
temperature for CNTs of experimental lengths.

4.2. Transmission functions for tubes of increasing lengths

We present in this section some transmission functions. These
functions are the fundamental tools to study thermal transport
since the thermal conductivities or conductances can be
obtained from it through (6)–(8). We used the following
parameters: c = 0.5, and the mass disorder corresponds
to replacing 12C by 13C (�m/m = 1/12). The qualitative
features presented are robust with respect to a smaller disorder
concentration, but longer tubes should then be studied. Also,
the regularizing parameter η/ω2

max = 10−8. The transmission
is computed for Nω = 200 points uniformly spaced in the
range 0 � ω � ωmax = 1650 cm−1. The Boltzmann
transmissions are computed in all cases with Nω = 1000.

Figure 6 compares the transmissions obtained within the
Green function approach and the Boltzmann treatment. In
all cases, the transmission of disordered systems is lower
than the ballistic transmission, obtained for defect-free CNTs,
and equal to the number of conducting channels at a given
pulsation. The results show that the transmission of acoustic
modes is almost unaffected by isotope disorder for the tube

Figure 7. Dotted line: variation of the normalized conductance for
temperatures T = 50 K (black curves, almost horizontal) and
T = 300 K (red curves) for the conductivities computed with the
Green function and Boltzmann approaches. For a given temperature,
the Boltzmann curve is always above the Green’s function curve.
Dashed lines are estimated scalings of the normalized conductance
ḡ ∼ L−α within the Green function approach: α = 0.43 at
T = 300 K. Recall that, for Fourier’s law to hold, the exponent α
should be equal to 1.

lengths considered here. Longer system sizes would be
necessary to modify substantially the transmission of these
acoustic modes. Higher frequency modes, on the other hand,
are damped much faster.

A very precise discussion of the transmission as a function
of the system length is done in Savic et al (2008), where
it is shown that the transmission is mostly of diffusive type,
particularly in the central region of the spectrum, where the
number of modes is maximal. Localization takes place near
band edges and for the highest pulsations.

The Boltzmann transmission is in fair agreement with the
Green’s function transmission, especially at low frequencies.
This is an indication that the transmission is of diffusive type
since the transmissions obtained with the Boltzmann approach
have a diffusive scaling. At higher frequencies, the Boltzmann
transmissions are usually higher than the Green’s function
ones. This is in analogy with the results for the dimensional
chains. This is a consequence of the diffusive behaviour
of the Boltzmann transmissions, which decrease slower than
the exponentially decreasing transmissions predicted by the
Green’s function method at higher frequencies.

4.3. Divergence of the thermal conductivity

Having computed the transmission functions, we now analyse
the behaviour of the thermal conductance as a function of the
system size at different temperatures. Figure 7 presents the
normalized thermal conductance as a function of the system
length (in log–log scale). Two temperatures are considered:
T = 50 and 300 K. We have verified that, although the
transmission function depends on the realizations of the isotope
disorder, they do not change much from one given distribution
of random masses to another. Typically, the variations of the
thermal conductance are less than 1%.

The scalings obtained for T = 50 K show that the
transmission regime is quasi-ballistic since the conductance

8
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Figure 8. Ratio of the thermal conductance to the ballistic
conductance. From top to bottom: increasing tube lengths.

does not change much with the system size. Indeed, at
low temperatures, only the low frequencies modes, which are
almost unaffected by the disorder, matter. In this regime, the
thermal conductivity diverges as the system size.

For higher temperatures (T = 300 K), more and more
higher frequency modes are introduced, so that disorder has a
noticeable effect and the conductance decreases as a function
of the system size. The slope α of the different curves has
been estimated using some least-squares fitting in order to
characterize a power law decay ḡ ∼ L−α , with α = 0.43 at
T = 300 K. The associated thermal conductivities at these
temperatures therefore do not converge as the system size is
increased:

κ(L) = gL/A ∼ Lβ ,

with β = 1 − α = 0.57 for the range of lengths considered in
this study. Recall that, for Fourier’s law to hold, the thermal
conductance should decrease as ḡ ∼ L−1, so that gL/A
converges when L increases.

The asymptotic regime is not yet attained for nanotubes of
lengths up to 2.5 μm (which are typical experimental lengths).
In this regime the exponent α is not universal since it depends
on the tube length and on the amount of mass disorder. As
in the case of one-dimensional chains, the truly asymptotic
regime corresponds to ḡ ∼ L−1/2 (or κ ∼ L1/2), with
associated transmission profiles where only acoustic modes
have a non-zero transmission. To this end, much larger system
sizes (or a larger mass disorder) should be considered.

In any case, however, it is observed that the conductivity
diverges as the system size is increased, since the thermal
conductance does not decrease fast enough.

4.4. Reduction of the thermal conductance as a function of the
temperature

We study now the temperature dependence of the reduction
of the thermal conductance due to isotope defects. Figure 8
presents the thermal conductance of defected CNTs divided by
the thermal conductance of defectless CNTs as a function of
temperature. Those curves are obtained for the transmission
computed with the Green’s function approach, but the curves
for the transmission computed using a Boltzmann treatment

Figure 9. Error on the conductivity computed with the profile
obtained from the Boltzmann approach. The reference value is
computed from the profiles obtained with the Green’s function
approach (decreasing lengths from top to bottom; only the first and
the last lengths are reported on the curves).

have a very similar behaviour with respect to temperature.
Such results were already presented in Savic et al (2008) for
lower disorder concentrations but with 14C isotope disorder.

As expected, the ratio of the thermal conductance to the
ballistic one is always smaller than 1, and converges to 1 in the
low temperature limit. Indeed, in the low temperature regime,
the thermal transport is due to the acoustic modes only and
these modes are almost unaffected by isotope disorder.

Isotopic disorder can be very efficient in reducing the
thermal conductivity, especially for tubes of experimental
lengths, even at moderately high temperatures. For instance,
for tubes of experimental lengths (L = 2.49 μm), the thermal
conductance is decreased by 80% at room temperature. Notice
that the decrease in the thermal conductivity increases with the
temperature. This is consistent with the results of the previous
sections since, as the temperature is increased, more and more
higher frequency modes are introduced and the transmission
function is almost a decreasing function of the pulsation.

The thermal conductivity (or conductance) predicted by
the Boltzmann approach is compared to the conductivity (or
conductance) obtained by the Green’s function approach. The
results are presented in figure 9, where the error

e(T ) = κBoltzmann − κGreen

κGreen
,

is plotted as a function of the temperature T . As can be
seen, the Boltzmann approach gives very good estimates of
the thermal fluxes in the temperature range considered. It,
however, overestimates the conductivity and the error increases
with the length of the system and the temperature. This can
be explained by the fact that the Boltzmann approach is not
precise enough to capture the real decay of the transmission
function. In particular, the decrease of the transmission is not
fast enough, which is consistent with the results of figure 6.

The good agreement of results obtained with the
Boltzmann approach show that Anderson localization, which
is not accounted for in the Boltzmann approach, does not have
a clear signature in thermal transport for CNTs of experimental

9



J. Phys.: Condens. Matter 21 (2009) 245302 G Stoltz et al

sizes. It also supports the view that thermal transport is CNTs
is rather of diffusive type (Savic et al 2008).

5. Conclusion

We studied the thermal transport of isotopically disordered
harmonic CNTs using Green’s function and Boltzmann
treatments. In accordance with the theoretical and numerical
results for 1D systems (presented in section 3), we expect
a divergence of the thermal conductivity with system size in
those cases. Our numerical results show that

(i) CNTs described by a harmonic model based on ab initio
computed force constants share some common features
with the thermal transport in isotopically disordered
harmonic one-dimensional atom chains, in particular a
power law divergence of the thermal conductivity κ(L) ∼
Lβ (or, equivalently, the thermal conductance does not
decrease fast enough, see figure 7). Therefore, no thermal
conductivity can be defined and Fourier’s law is not
valid. For tubes of experimental length, the exponent
of the power law divergence β � 0.5–0.6 at room
temperature. For longer tubes, the exponent may well be
different since theoretically β = 1/2 in the asymptotic
regime where only the acoustic branches have a non-
zero transmission. Experimental results on the length
dependence of disordered CNT conductivities, measuring
divergences β � 0.4–0.6 for boron nitride tubes (with a
large fraction of mass disorder), have been published in
Chang et al (2008);

(ii) the thermal conductivity decreases monotonically with the
temperature. We showed that there is a dramatic reduction
of the thermal conductance for systems of experimental
sizes (roughly 80% at room temperature), when a large
fraction of isotopic disorder is introduced. This is in
accordance with experimental measurements of the effect
of isotope disorder in boron nitride nanotubes, which
demonstrated dramatic changes in the conductances (a
conductance enhancement by 50% for purified materials)
(Chang et al 2006);

(iii) a Boltzmann description of the thermal transport gives
correct results for the thermal conductance even in the
presence of Anderson localization. This is particularly
interesting since the computation of the transmission
using Boltzmann’s equation is much less computationally
expensive, so that larger systems (such as multi-walled
CNTs, boron nitride nanotubes or single-walled CNTs
with a large diameter) may be studied with this method.
This shows also that Anderson localization, which is
not accounted for in the Boltzmann approach, does not
have a clear signature in thermal transport for CNTs of
experimental sizes. This is also another indication that the
transport is of diffusive type (Savic et al 2008).

It would now also be interesting to check whether
different types of disorder could lead to finite conductivities—
in particular, vacancies or functionalized groups. Of course, it
would also be possible to combine different types of disorder
in order to further reduce the conductivity. As a first-order

approximation to the modelling of vacancies, it could be
possible to consider defected atoms with very large (infinite)
masses, which amounts to neglecting the local geometric
rearrangement as compared to actual vacancies. The results
would then be very comparable to the results presented here,
the precise scalings depending, however, on the concentration
of vacancies.
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